Presentation to HDDC, and Oracle Corporation Energy Efficiency Opportunities in Data Centers

Tengfang (Tim) Xu, Ph.D., PE
Lawrence Berkeley National Laboratory
January 15, 2004

Presentation Outline

- LBNL Past Work
- Best Practice Development
- LBNL/CEC Efforts to Date
- New and Current Projects
- Anticipated Performance Evaluation
- Discussion

LBNL Past Work – Benchmarking

- The "market"
- Many myths exist concerning electrical loads
- Utility requests for power were unrealistic
- Data centers are energy intensive
 - Unknown efficiency improvement opportunity
- Energy Intensities are reputedly rising

Electricity in Data Centers

Better Ratio?

HVAC Energy

Projected Full Computing Load (Stipulated Maximum)

Chillers

Total Chilled Water System

Metrics

- IT Equipment Load Intensity W/sq.ft.
- Infrastructure Load Intensity W/sq.ft.
- Chilled Water Plant kW/Ton
- Computer Room Air Conditioners cfm/kW
- Central air handler(s) cfm/kW
- Annual energy cost \$/sf
- Annual energy use kWh/sf/yr

Best Practice Development

- Benchmarking can identify best/better practices, e.g.,
 - Use of free cooling
 - Separate high temperature chiller
 - Use of multiple cooling towers
 - Reduce excess pumping
 - Recirculation air setback
- Benchmarking can spot maintenance problems

Efficiency Recommendations

Air Cooling

- Air Handler Efficiency
- Take Advantage of Thermal Stratification
- Air Management
 - Hot/Cold Aisles
 - Seal Openings
 - Temperature and Humidity

"Efficient" Reliability

- UPS systems
 - Configure to Operate Near Rated Load
 - Compare System Efficiencies at Expected Operation
 - Inertial vs. Battery Systems
- Standby Generator Losses

LBNL/CEC Activities to date

- Case studies/energy benchmarking
- CA load characterization
- Energy research roadmap

New and Current Projects

- Benchmarking and best practices
- Investigate UPS systems
- Investigate power supplies in IT equipment
- Collaborate on building interface developments

Anticipated Performance Evaluation

- Benchmark (measure) energy use in 6-10 data centers
- Develop self-benchmarking guidelines

Objectives

- Provide additional benchmarks and identify best observed practices. Communicate findings
- Market transformation through use of benchmarks to challenge conventional design, set operational goals, and identify where additional innovation is needed.

Strategy

- Identify benchmarking sites through industry and utility contacts
- Include standby generation losses
- Case study reports for each site
- Solicit additional benchmark data
- Review/Document all results to determine best performance

Self Benchmarking

- Develop protocol
- Owners and designers can obtain information in consistent manner
- Useful for comparison, baseline, trends
- More benchmarks will help identify best practices

Discussion– Metrics for performance index

- Index of Performance = Building systems KW per UPS Output
- Computations per Watt
- Nameplate vs. Actual Comparisons
- Standby generator energy losses
- Others

Data Center websites

- http://Datacenters.lbl.gov
- www.upsite.com
- www.7X24exchange.org
- www.itherm.org

Contact

Tengfang (Tim) Xu, Ph.D., PE

Project Manager

Lawrence Berkeley National Laboratory

One Cyclotron Road Tel: (510) 486-7810

BLDG 90R3111 Fax: (510) 486-4089

Berkeley, CA 94720-8134 Email: ttxu@lbl.gov